Fuzzy Set Model

Fuzzy Set:

Let X be the universe of discourse, with elements of X denoted as x. A fuzzy set A of X is characterized by a membership function $\mu_A(x)$ that associates each element x with a degree of membership value in $A. 0 \leq \mu_A(x) \leq 1.$
Fuzzy Set Example

Young is fuzzy set. Its membership function could be defined as the follows:

![Membership Function Diagram](image)
Fuzzy Set Operations

• Intersection
 \[\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\} \]
 \[\mu_{A \cap B}(x) = \mu_A(x) \times \mu_B(x) \]

• Union
 \[\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\} \]
 \[\mu_{A \cup B}(x) = 1 - (1 - \mu_A(x)) \times (1 - \mu_B(x)) \]

• Complement
 \[\mu_{\neg A}(x) = 1 - \mu_A(x) \]
Term Correlation Matrix: C

- C is a t by t matrix, and each column (row) corresponds to an index term.

- $c_{ij} = \frac{n_{ij}}{n_i + n_j - n_{ij}}$
 - n_i is the number of documents containing the term k_i and n_{ij} is the number of documents containing both k_i and k_j.

- A larger value of c_{ij} means the two terms are more correlated.
Fuzzy Sets of Documents Defined by Index Terms

Using the correlation matrix, each index term k_i defines a fuzzy set of documents. The membership function for a document d_j is:

$$
\mu_{ij} = 1 - \prod_{k_l \in d_j} (1 - c_{il})
$$
Document And Query Representation

- Document
 a list of index terms contained in the document

- Query
 a logic expression same as in the boolean model
Similarity Measure

Relevant documents of a query is a fuzzy set defined by its membership function.

Example:

Query: k_i

$$\mu_{ij} = 1 - \prod_{k_l \in d_j} (1 - c_{il})$$
More Query Examples

- $q = k_1$ and k_2
 \[
 \mu_{qj} = \mu_{1j} \times \mu_{2j} = (1 - \prod_{k_1 \in d_j} (1 - c_{1_{k_1}})) \times (1 - \prod_{k_2 \in d_j} (1 - c_{2_{k_2}}))
 \]

- $q = k_1$ or k_2
 \[
 \mu_{qj} = 1 - (1 - \mu_{1j}) \times (1 - \mu_{2j}) = 1 - (1 - (1 - \prod_{k_1 \in d_j} (1 - c_{1_{k_1}}))) \times (1 - (1 - \prod_{k_2 \in d_j} (1 - c_{2_{k_2}}))))
 \]
 \[
 = 1 - \prod_{k_1 \in d_j} (1 - c_{1_{k_1}}) \times \prod_{k_2 \in d_j} (1 - c_{2_{k_2}})
 \]
Advantages And Disadvantages

• Advantages
 – use fuzzy set theory. The set of relevant documents is fuzzy.
 – query terms which are in a document have aslo impact.

• Disadvantages
 – no term frequency
 – not well evaluated
Extended Boolean Model

• Boolean Model:
 – query: logic expression
 – document: binary representation
 – similarity: simple binary similarity

• Extended Boolean Model:
 – query: logic expression
 – document: vector representation with term weighting
 – match: generalized similarity measure
Generalized Similarity Measure

• *And* logic Operation
 relevant documents should be close to (1 1 . 1)

• *Or* logic Operation
 relevant documents should be far from (0 0 . 0)

• Different similarity measures for *And* and *Or* operations.
Generalized Similarity Measure

Assume that all term weights are in $[0, 1]$.

- $q = k_1$ and k_2 (w_1 and w_2 are their weights in document d)

$$sim(q,d) = 1 - \sqrt{\frac{w_1^2 + w_2^2}{2}}$$

- $q = k_1$ or k_2

$$sim(q,d) = 1 - \sqrt{\frac{(1-w_1)^2 + (1-w_2)^2}{2}}$$
P-norm Model

Assume x_i is the term weights for terms in the query and m is the number of terms in the query

$$sim(q_{or}, d) = \left(\frac{1}{m} \sum_{i=1}^{m} x_i^p \right)^{\frac{1}{p}}$$

$$sim(q_{and}, d) = 1 - \left(\frac{1}{m} \sum_{i=1}^{m} (1-x_i)^p \right)^{\frac{1}{p}}$$

$$sim(q_{not}, d) = 1 - sim(q, d)$$
P-Norm

- P is the degree of strictness
- $P = 1$: normal vector model and least strictness
- $P = \infty$: boolean model and most strictness
- $P = 2$: extended boolean model
Characteristics

• Boolean logic queries

• Ranked retrieval

• $tf*idf$ weighting

• Effective
Latent Semantic Indexing

• User singular value decomposition (a dimensionality reduction technique) to identify uncorrelated, significant basis vector or factor

• Replace original index terms with a subset of new factors (concepts) in both documents and queries

• Compute the similarity in this new space