Basic Concepts

- Programs and data must be in main memory during execution
- Speed of operations is highly dependent upon the speed of transfer between the CPU and main memory
- Ideally main memory would be fast, large, and inexpensive (can not have all three)
- Max size of memory is determined by number of address bits, e.g. 16 bit addresses, \(2^{16} = 64K\) memory locations, 32 bit addresses \(2^{32} = 4G\) memory locations

Connecting Main Memory to the CPU

```
<table>
<thead>
<tr>
<th>CPU</th>
<th>Main Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>Up to (2^k) addressable locations</td>
</tr>
<tr>
<td>MDR</td>
<td>Word length = (n) bits</td>
</tr>
<tr>
<td>k bit address bus</td>
<td>Control Lines (read, Write, MFC, …)</td>
</tr>
<tr>
<td>k bit data bus</td>
<td></td>
</tr>
</tbody>
</table>
```
Basic Concepts 2

• Memory Access Time
 – time that elapses between the initiation of an operation and the completion
 – e.g. the time between the Read and MFC signals

• Memory Cycle Time
 – minimum time delay required between the initiation of two successive memory operations
 – e.g. the time between two successive read operations

• Random-Access-Memory (RAM)
 – a memory unit in which any location can be accessed for a read or write operation in some fixed amount of time that is independent of the location

• Cache Memory
 – small, fast memory inserted between the CPU and main memory used to reduce memory access time
 – stores currently active program segments and data

• Memory Interleaving
 – organizing memory into a number of modules and arranges addressing so that successive words are placed in different modules
 – used when parallel access to the different modules is possible
Basic Concepts 3

• Virtual Memory
 – used to increase the apparent size of main memory
 – virtual address space is larger than physical memory size
 – disk storage is used to hold program segments and data which are not being currently used by the CPU
 – requires a special control circuit, a memory mapping unit
 • to translate virtual addresses used by the CPU to actual memory addresses
 • to determine if the necessary program segment or data is in main memory or in disk storage
 – significant time delay associated with bringing in data from disk storage
 • there are many techniques for minimizing the number of time this retrieval must occur
Semiconductor RAM Memories

- Introduced in the late 1960s
- Speed has dramatically increased and cost decreased, especially with VLSI memory chips
- Usually organized in the form of an array in which each cell stores on bit
- Each row stores a memory word and connects to a *word line* for addressing purposes
- Each column connects to a Sense/Write circuit which connects to data input/outline lines of the chip

Organization of bit cells in a memory Chip

![Diagram of memory chip organization](image-url)
RAM Memories

- Memory chips organization can be referred to by their internal storage or its total storage
 - 16 words of 8 bits each is: a “16x8 organization
 - or “a 128 x 8” memory chip

- The organization determines the number of external connectors required in a chip
 - power and ground connections are also required

Organization of 1K x 1 Memory Chip
• A 16 x 8 memory chip requires 16 external connections
 – 4 address
 – 8 data
 – R/W & CS
 – Power & ground

• A 1k (1024) memory chip:
 – can be organized as 126 x 8
 – would require 19 external connections
 – alternately can be organized as 1K x 1
 – requires 16 external connections
Types of RAM
(Dynamic RAM)

• DRAM: Dynamic RAM
 – used for most system main memory because it is cheap and small
 • standard RAM, typically rated 60 or 70 ns
 – must be continually rewritten in order for it to maintain its data (otherwise the charge fades)
 • done by placing the memory on a refresh circuit that rewrites the data several hundred times per second.
 – singled ported
 • only one port for accessing data-either writing or reading (can do both simultaneities)

• FPM DRAM: Fast Page Mode DRAM
 – slightly faster than regular DRAM
 – uses a slightly more efficient method of calling data from the memory
 – not used much anymore due to its slow speed, but it is almost universally supported.

• EDO RAM: Extended Data Output RAM
 – same as DRAM, with faster sequential access
 • allows one access to begin while another is being completed
 – generally 5-20% faster than FPM DRAM
 – must be properly supported by the chipset
 – but it is the most common type of memory for most users
Types of RAM 2
(Dynamic RAM 2)

- **BEDO RAM:** Burst Extended Data Output RAM
 - basically EDO DRAM with combined pipelining technology (read data in fast bursts)
 - capable of working with faster bus speeds.
 - Support for the BEDO technology is rather sparse

- **SDRAM:** Synchronous Dynamic RAM
 - its speed is synchronous directly from the clock speed of the entire system.
 - it works at the same speed as the system bus, up to 100MHz
 - although faster, the speed difference may not be noticed due to the fact that the system cache masks it
 - becoming new standard for PC memory

- **RDRAM:** RAMBus DRAM
 - technology still being developed by Intel
 - may prove to surpass SDRAM
 - goal is to get rid of the latency (time taken to access memory)
 - by actually narrowing the bus path
 - and treating the memory bus as a separate communication channel
Types of RAM 3
(Special Purpose RAM)

- **SRAM: Static RAM**
 - maintains its data as long as power is provided
 - does not need to be refreshed
 - much more expensive than DRAM.
 - very fast and typically used for cache

- **SGRAM: Synchronous Graphics RAM**
 - single ported RAM for some graphics cards
 - provides about 5% more bandwidth than the EDO RAM

- **VRAM: Video RAM**
 - typically only used on graphics accelerators
 - dual ported memory (Can read from memory and write to screen at the same time)
 - significant speed performance over its EDO RAM

- **WRAM: Window's RAM**
 - dual ported, static memory
 - faster than VRAM

- **MDRAM: Multi-banked Dynamic RAM**
 - provides more bandwidth than EDO RAM) through bank switching
 - only used on the ET6000 chipset based graphics cards
 - useful for high resolution and color depth graphics
SDRAM Considerations

• SDRAM is the new developing standard and buying SDRAM requires some information to consider

• Speed
 – speed is generally rated in two different ways
 • most common way is the nanosecond rating, e.g. "10 nanosecond", which is the common speed for SDRAM
 • second method is the MHz rating, e.g. "100 Mhz".

 – SDRAM is synchronous, tied to the bus speed of the system
 • unlike older memory that used wait states to compensate for slowness, SDRAM does not use wait states.
 • this means that the memory must be fast enough to work on intended system
 • therefore, 10ns SDRAM should really not be used in systems using more than an 83MHz bus

SDRAM Considerations 2

• 2-clock vs. 4-Clock
 – structurally, 2-clock and 4-clock, SDRAMs are the same, but they are accessed differently
 • A 2-clock SDRAM module is set up so that each clock cycle accesses two chips on the module.
 • A 4-clock SDRAM setup accesses 4 chips per clock cycle
 – check motherboard's documentation to determine which access number is appropriate
 • 4-clock modules are the most common

• Serial Presence Detect
 – some SDRAM modules have a special EEPROM chip on it that holds information about the SDRAM module, such as speed settings.
 – the motherboard queries this chip for information and makes changes in the settings to work with the SDRAM
 – some motherboards require this feature
 • check motherboard's documentation if the board requires it
 • SDRAM won't work without it.
Rambus Random-Access Memory (RDRAM)

- Developed by Rambus, Inc.
 - In 1997, Intel licensed the technology for use on its motherboards
 - An alternative memory architecture called SyncLink DRAM (SLDRAM)

- RDRAM data transfer at up to 600 MB/sec
 - (SDRAM) can deliver data at a maximum speed of about 100 MB/sec
 - A newer version of RDRAM (nDRAM) transfers data at up to 1,600 MB/sec

- RDRAM is used in place of VRAM in some graphics accelerator boards, and in some main memory

- RDRAM employs a narrow, uniform-impedance transmission line, the Rambus Channel, to connect the memory controller to a set of RIMMs (RDRAM modules)
RDRAM

SDRAM Architecture

- Variable length wires, different routes
- 66-133Mhz

Rambus Architecture

- Few wires: all same length & load
 - All run at high speed
 - More uniform routing
- Precision clocking
- 300 - 400 MHz bus clock
RDRAM

- RDRAM memory controller connects to multiple DIMM sockets through a 64-bit wide memory bus operating at 300-400 MHz
 - High bandwidth

- Address and control signals are connected to the DIMM modules using a different topology than for the data bus, resulting in some signals being loaded differently than others
 - Row and Column addresses are transmitted on a shared set of address lines, with the memory controller scheduling this resource when multiple transactions are being serviced
 - Low pin count
RDAM

DIMM Modules

- 1 rank of devices responds to each access
 - All devices respond similarly
 - All devices consume same power
- Single-sided DIMM
 - 4 banks per device => DIMM has 4 banks

RIMM Modules

- 1-32 devices per RIMM module
 - 1 device responds to each access
 - Devices can be in different power states
 - Different capacities for different market segments
 - Single-device minimum upgrade granularity
 - Module bandwidth same as device bandwidth
- Devices are independent
 - 8 device RIMM, 16 banks each => RIMM has 128 banks
Read Only Memory (ROM)

- ROM is memory that can only be read from but not written to, “non-volatile memory”
 - used in situations where the data must be held permanently
 - Computer BIOS is usually stored in ROM
 - ROM is slower than RAM
 - often ROM data is copied into RAM before use, “shadowing” which increases operating speed.

- PROM: Programmable ROM
 - basically a blank ROM chip that can be written to once

- EPROM: Erasable Programmable ROM
 - like PROM except, that one can erase stored data, allowing it to be rewritten.
 - erase the ROM by shining ultra-violet light onto a sensor atop the ROM chip for a certain amount of time

- EEPROM: Electrically Erasable Programmable ROM “Flash ROM”
 - like EPROM but erased by an electrical current
 - EEPROM allows users to upgrade their BIOS
Memory Packaging

- Packaging is the entire makeup of a unit of memory
 - memory chips are too small, they must be in a medium and combined on a small fiberglass
 - so that can be easily manipulated and added to a system

- DIPs: Dual Inline Packages
 - individual memory units either soldered onto the motherboard or placed in special sockets
 - when a motherboard-soldered memory chip went bad, the motherboard required replacement
 - With socketed chips, chip creep was a problem when chips were lodged out of the socket due to thermal expansion

- SIMMs: Single Inline Memory Modules
 - cards latched into a socket on the motherboard eliminates previous problems
 - come in two sizes, 30-pin and 72-pin
 - 30 pin SIMMs usually came with small amounts of memory (smaller than 8MB); not used much anymore
 - 72-pin SIMMs are mostly used
Memory Packaging 2

- both single sided and double sided designs (whether the SIMM has DIP chips on one side of the SIMM or both)
 - Usually, 1, 4, and 16MB SIMMs are single sided. Other sizes are double sided
- Some double sided SIMMs are actually two single sided SIMMS back to back, wired together within the fiberglass module
 - these designs operate a little different electrically
 - which is the reason some motherboards only use SIMMs of certain sizes

- DIMMs: Double Inline Memory Modules
 - a newer memory module with 168 pins
 - 83 pins on each side of the DIMM are more like little pads of metal
 - provides a 64-bit memory pathway, allowing more performance while maintaining a small package size
 - also makes it even more imperative that the connection remain intact with all the "pads."
 - SDRAM usually comes on DIMMs
 - come in either 3.3 volt or 5 volt designs, and unbuffered or buffered
 - 3.3 volt unbuffered is most common
Static Ram

• Contain circuits that retains their state as long as power is applied

• Implementation
 – cross connect two inverters to form a latch
 – transistors act as switches that open or close under the control of the Word Line

• Operation
 – Write: Sense/ write circuit places value on line b and compliment on b’; forces cell into correct state
 – Read: Activate Word Line to close switches T_1 and T_2; b carries the value of the circuit; Sense/ write circuit monitors b and b’ and set out accordingly

A Static RAM Cell
CMOS Memory Cell

- Major advantage of very low power consumption
 - current flows only when the cell is being accessed
 - 5 volt and 3.3 volt versions

- Implementation
 - transistor pairs forms the inverters
 - in state 1, point X is high
 - transistors T3 and T6 are on while T4 and T5 are off

A CMOS Memory Cell

\[\text{b} \quad \begin{array}{c}
T_1 \\
T_3 \\
X \\
T_5 \\
T_6 \\
T_4 \\
Y \\
T_2
\end{array} \quad \text{b}' \]

\[\text{V}_{\text{supply}} \]

Word Line

Bit Lines

Copyright 1999 ©Roy M. Wnek. All rights reserved.
Static Ram

- Contain circuits that retains their state as long as power is applied

- Implementation
 - cross connect two inverters to form a latch
 - transistors act as switches that open or close under the control of the Word Line

- Operation
 - Write: Sense/ write circuit places value on line b and compliment on b’; forces cell into correct state
 - Read: Activate Word Line to close switches T₁ and T₂; b carries the value of the circuit; Sense/ write circuit monitors b and b’ and set out accordingly

A Static RAM Cell
CMOS Memory Cell

- Major advantage of very low power consumption
 - current flows only when the cell is being accessed
 - 5 volt and 3.3 volt versions

- Implementation
 - transistor pairs forms the inverters
 - in state 1, point X is high
 - transistors T3 and T6 are on while T4 and T5 are off

A CMOS Memory Cell

![Diagram of CMOS Memory Cell]
Dynamic Memories

- Circuits with fewer components translate to cheaper cost

- Information is stored as a charge in a capacitor
 - only able to store a charge for a few milliseconds
 - needs periodic refreshing by a special Refresh Circuit which accesses all cells every 2-16 milliseconds
 - takes relatively long to charge a capacitor

- A transistor acts as a switch in applying a charge to a capacitor

- During a read operation, the cell is discharged and a sense circuit attached to the bit line compares the voltage to a threshold value

A Single Transistor Dynamic Memory Cell
A Typical 1M DRAM Chip

- Organized as a 1k x 1k array

- 10 bits row address and 10 bits column address
 - addresses are multiplexed on 10 pins
 - Row Address Strobe (RAS) and Column Address Strobe (CAS) coordinate addressing

- Block transferring involves multiple column accesses for a single row access

Internal Organization of a 1M x 1 Dynamic Memory Chip
Read Only Memories

- Used to implement parts of a computer memory that contain fixed programs or data
 - BIOS
 - Microprogram Control Store

- Reading from ROM is relatively slow
 - often ROM data is copied to RAM during boot up operation, “Shadowing”

- The presence (or absence) of a connection at point P determines the value of the cell
 - a fuse in used at point P in PROMs
 - a special transistor is used at point P in EPROMS and EEPROMS

A ROM Memory Cell
Speed, Size, and Cost

- Relative speed, size, and cost of
 - static RAM
 - dynamic RAM
 - magnetic disk storage

- Basic strategy
 - bring the instructions and data that will be used in the near future as close to the CPU as possible

- Principle of locality and other algorithms

Memory Hierarchy

```
Increasing size

CPU
  Primary cache
  Secondary cache
  Main memory
  Disk memory

Increasing speed

Increasing cost per bit
```
Cache Memories

• Effectiveness is based on the Locality of Reference principle
 – sequential execution
 – simple and nested loops

• Temporal and spatial manifestation
 – a recently executed instruction is likely to be executed again very soon
 – instructions in close address proximity to a recently executed instruction are also likely to be executed very soon

• Memory control circuit will fetch from main memory a cache block or cache line for ready use
 – a mapping function specifies a relationship between blocks in cache and those in main memory
 – if the desired block is already in cache, a hit occurs and there is no need to refer to main memory, else a miss or fault occurs
Cache Memories 2

– if the cache is full when new blocks are coming in, a *replacement algorithm* determines which blocks to remove from cache

• After a cache hit occurs during a write operation, two strategies are possible
 – *write through*: simultaneous update of the cache and main memory
 • simple, but may result in unnecessary writes to main memory
 – *write-back or copy-back*: set a *dirty bit* in the appropriate cache block which indicates that main memory needs updating whenever that block leaves the cache
 • also may result in unnecessary writes to main memory, copies entire block back to main memory even if only one word changed

• If a cache miss occurs during a read operation, two strategies are possible
 – read in the entire block from main memory before providing the desired word to the processor
 – provide the desired word to the processor as soon as it is read from main memory, *load-through*
Mapping functions

- **Direct Mapping**: the simplest method
 - map some number of main memory blocks to each cache block position
 - use a block number based function
 - use a tag value to identify which block is in cache (only need to check one tag)
 - can cause contention even when the cache is not full

- **Associative Mapping**: a more flexible method
 - place a main memory block in any cache position
 - use a tag value to identify which block is in cache (must check all tags)
 - can cause contention only when the cache is full

- **Set Associative Mapping**: combination method
 - group cache blocks into sets
 - mapping allows a block of main memory to be reside in any block of a specific set
 - eases contention problem of the direct method by providing a few placement choices
Replacement algorithms

- Cache Coherence problem
 - ensuring that two different entities (the CPU and a DMA subsystem) use the same copies of data
 - a valid bit is used to identify the currency of cache blocks when DMA processes bypass the cache
 - cache-flushing may be necessary before a DMA transfer takes place

- No replacement strategy is needed in Direct Mapping

- In Associative and Set-Associative Mapping, a strategy is needed to determine which cache block to remove
 - strong influence on overall system performance

- Least Recently Used (LRU) is commonly used
 - based on the locality principle
 - cache controller must track references to all blocks via a counter
 - can have poor performance in some circumstances which can be improved by added some randomness to replacement choices
Performance Considerations

• The *price/performance ratio* is a strong indicator of commercial success
 – performance depends on how fast instructions can be brought into the CPU for execution

• Memory Interleaving
 – distribute successive memory address among successive memory modules
 – considerable speed up can be achieved when several memory modules can be busy at one time

• Hit and Miss Ratio
 – excellent indicator of the effectiveness of a particular implementation of memory hierarchy
 – ideally, the entire memory should appear to the CPU as a single memory
 – adverse effect of a miss due to the extra time necessary to fetch the desired data from slower memory
 – average access time = function (hit rate, Cache access, and Miss penalty)

\[t_{\text{ave}} = hC + (1-h)M \]
Performance Considerations 2

– improve hit ratio by
 • larger cache
 • increase the block size, up to a certain point
– reduce the miss penalty
 • use the load-through approach
 • use a secondary cache

• Caches on the CPU chip
 – size of primary (on-CPU) cache is determined by cost and chip size, layout, heat generation
 – add a larger, but slower secondary (off-CPU) cache

• Write Buffer
 – when using a write-through strategy, the CPU writes to a buffer and resumes processing
 – dump the write buffer whenever memory is available
 – check the write buffer before a read operation

• Prefetching
 – via a software instruction executed while the CPU is engaged in computationally intensive operation
 – a prefetch can be inserted by the programmer or the compiler

• Lockup-Free Cache
 – a cache that support multiple outstanding misses
 – avoid locks from prefetching and from misses
Virtual Memories

- In modern computers, address space used by the CPU is larger than physical main memory.
- A Memory Management Unit (MMU) translates virtual addresses to physical addresses.
- Data not in physical main memory is stored on disk and retrieved when needed via DMA.

Virtual Memory Organization

```
Processor -> MMU
  | Virtual address
  | Physical address
  | Data

Cache
  | Physical address
  | Data

Main memory
  | DMA transfer

Disk storage
```
Virtual memory address translation

- Organize programs and data in fixed length units, called *pages*
- Maintain a page table which correlates virtual page numbers to physical page frames
 - control bit indicate the status of the page

Virtual address from processor → Page table address → Virtual page number | Offset → PAGE TABLE → Control bits | Page frame in memory → Page frame | Offset → Physical address in main memory
Associative-mapped TLB

- Translation Lookup Buffer is a small portion of the page table which is stored within the MMU
 - contains the most recently accessed pages
 - determine whether a hit or miss occurs

Virtual address from processor

Virtual page number

Offset

TLB

Virtual page number	Control bits	Page frame in memory

Virtual page number

Control bits

Page frame in memory

Physical address in main memory

Page frame

Offset

Yes

Miss

Hit